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ABSTRACT
The several phenomena involved in theoretical prediction of the far-

field sound radiation attentuation from an acoustically lined duct have been
studied. These include absorption by the suppressor, termination reflec-
tions, and far-field radiation. Extensive perametric studies have shown
that the suppressor absorption performance can be correlated with mode cut-
off ratio or angle of propagation. The other phenomena can be shown to
depend explicitly upon mode cut-off ratio. A completr :./stem can thus be
generated which can be used to evaluate aircraft sound suppressors and which
can be related to the sound source through the cut-off ratio-acoustic power
distribution. Although the method is most fully developed for inlet sup-
pressors, several aft radiated noise phenomena will also be discussed. This
paper summarizes this simplified suppressor design and evaluation method,
presents the recent improvements in the technique and discusses areas where
further refinement is necessary. Noise suppressor data from engine experi-

ments are compared with the theoretical calculations.
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INTRODUCTION

The ultimate goal of noise suppressor research, as applied to aircraft
applications, is to develop the ability to predict sound attenuation in the
far-field as a function of directivity angle. It is desirable to perform
this modeling with a purely theoretical foundation so that it will be of
general application and not tied to specific configurations or operating
conditions as would be the case if an empirical foundation were used. This
suppressor modeling should be applicable to all aircraft operating condi-
tions from static testing to actual flight. This goal is extremely demand-
ing since it requires the integration of all aspects of acoustics research
including noise source modeling, sound propagation in acoustically treated
ducts, scattering by flow gradients and duct discontinuities (such as wall
impedance or the duct termination), and radiation to the far-field through a
flow field which varies from a high Mach number in the duct to a lower Mach
number (or zero flow) in the far-field. Analytical solutions do not exist
for some aspects of this problem s¢ that conventional modal analysis cannot
be carried through from the source to the far-field. Obviously approximate
methods must be used to fill the voids where they exist.

This paper presents a simplified modeling procedure based upon mode
cut-off ratio which shows promise in handling this extremely complex prob-
lem. It should be emphasized that the cut-off ratio method is not an analy-
sis technique in itself but rather a means of interpreting the results of
separate exact analyses where they exist. This method, in its interpreta-
tion of results, is closely allied to geometric acoustics so that ray
methods can be used where other analysis does not exist.

There have been numerous contributions to the analysis of sound propa-

gation in acoustically lined ducts upon which some of the elements of this
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paper are built. However, no attempt will be made to review all this work,
but rather only those contributions directiy related to the cut-off ratio
method. Surveys of the duct acoustics lierature have been presented by
Nayfeh, et a].,l Vaidya and Dean,2 and Syed and Bennett.3 Not all of

the physics of suppressor sound propagation have been incorporated into the
cut-off ratio method at this time as will become evident in later
discussions.

The key discovery which has led to the cut-off ratio method of sup-
presscr analysis was made by Rice4 who demonstrated that the optimum wall
impedance and maximum possible attenuation for single modes propagating
within a suppressor, with a uniform steady flow with wall boundary layers,
could be approximately correlated with mode cut-off ratio. This was sig-
nificant in that it implied that individuai modal identity was not required
and that modes with similar cut-off ratios would behave similarly within an
inlet duct suppressor. Rice5 proposed the cut-off ratio method as a sup-
pressor design method and proceeded to develop the tools needed to handle

the entire sound propagation problem including a modal density function,6

the duct termination 1oss,7 and the far-field radiation pattern.7 Al
elements of the method require modal information only in terms of mode cut-
off ratio with the actual modal identification being suppressed. Anderson
(unpublished presentation at the 96th Meeting of the Acoustical Society of
America, Honolulu, Hawaii, Dec. 1978) has correctly pointed out that for a
single mode incident upon a suppressor from a hardwalled duct, modal infor-
mation is necessary to determine the suppressor optimum impedance charac-
teristics. However, this sclution introduces the complicating factor of
modal scattering which obscures the simplicity of the cut-off ratio method.

8

In actual use® it is assumed that when many mcdes are present the modal
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scattering balances out among the various cut-off ratio regimes. Modal
scattering must be studieu further and incorporated into the present method.
The calculation of far-field radiation patterns has been studied for

several years. Tyler and Scerin?

presented the radiation pattern for a
flanged duct. The Wiener-Hopf technique has been used to analyze the radia-
tion from an unflanged circular duct by Levine and Schwinger,10

Carrier,11 Neinstein,12 Lansing,l3’14 Homicz and Lordi,15 and

16,17 018

Savkar. and Rienstra19 have included the shear layer

instability required for low frequency propagation from an exhaust duct.

120 21

Cande and Koch™" have studied radiation from unflanged two dimension-

al ducts. Far-field radiation has been studied using spherical wave func-

tions by Mungur, et a].,22’23 24 25

Plumblee,” " Whitesides and Mungur,
Beckemeyer, et a].,26 and Sawdy, et al..27 These latter studies allow

the matching of conical ducts to the far-field. All of these radiation
models suffer a common weakness. They cannot describe the radiation from an
aircraft inlet under general operating conditions. At static test condi-
tions the inlet has a large Mach numbe» flow within the duct but there is no
flow in the far field. The inflow follows approximately radial streamlines
into the inlet. In flight the inlet captures a streamtube whose diameter
depends upon the flight speed and the velocity inside and outsiw of this
tube is the same (relative to the inlet). The flanged duct radiation model
is formulated for zero flow inside and outside the duct. The Wiener-Hopf
technique can handle two separate parallel flows which is an excellent model
for exhaust radiation but it models inlet radiation only when the flight
Mach number equals the duct Mach number. A later discussion will suggest a

way of using this unflanged duct solution for inlets by removing the un-

wanted refraction effects due to the slip layer. In this paper a modified
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form of the flanged duct solution will be used. This solution is simpie and
can be approximated by an expression which contains the modal information
only in the form of cut-off ratio.7 This is a key requirement for coupli-
ing the radiatior solution to the duct solution and the source condition.
Also simple transformations can be applied to handle the effects due to

28,29

differences between duct flow and exterior Mach numbers. These sim-

30 to show that

ple angle transformations have been used by Rice and Saule
convection and refraction effects can be added to the flanged duct solution
so that it very accurately approximates the more exact Wiener-Hopf solution
which is valid for aft radiation.

The duct refliection coefficient and termination loss are inherent in
the Wiener-Hopf radiation solution. However, as discussed above this method
is inadequate for aircraft inlets as well as being too complex for routine
calculations. Zorumski31 has studied the termination effects for the
flanged duct case. A simple appreximate equation7 dependent only on cut-
off ratio has been derived from his results.

The final consideration involves the description of the noise source.
Single mode assumptions (usually least attenuated mode) have been usea by

1.32 and Minner and Rice33 for thin rectangular ducts

Motsinger, et a
which might approximate the annular passages of an inlet or aft duct with
splitter-rings. This assumption has provided good results for these heavily
suppressed inlets and aft fan ducts but it is not valid for engine inlets
with wall suppression on]_y.34 The assumption of equal acoustic power per

mode has been used by Ko35

in theory-data comparisons for a flow-duct and
by Syed and Bennett3 for engine tests. Rice and Heidelberg8 used equal
power per mode in the first attempt to predict far-field radiation attenua-

tion using the cut~off ratio technique. The technique incorporated a bias-
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ing function which could be used to alter the modal distribution away from
equal power, but since a no-flow radiation function was used in the theory
it was not believed worthwhile to use the biasing function. In this paper
an improved method for estimating the source power distribution will be
introduced.

The viable alternatives to the method presented here for predicting
radiation attenuation for an aircraft inlet are very Timited. Purely numer-
ical techniques show great promise but will require extensive development
which i1s in progress. Numerical approaches will not be considered in this

paper. Baumeister36

has recently presented a review of the progress in
numerical analysis in acoustics. Classical modal analysis, although con-
taining the modal scattering presently missing from the present approach,
cannot currently be carried to the far-field through the compiex flow field
present near the inlet lip. Syed and Bennett3 have predicted power
attenuation but had to resort to a purely empirical fit of the directivity
attenuation. They also had to restrict the number of modes used (selected
representative modes) to keep their computer time within reasonable bounds.

Kempton37’38

has presented a geometric acoustics approach to predict far-
field radiation attenuation for straight, converging, and diverging inlets.
His results for straight inlets are qualitatively very similar to the re-
sults of the cut-off ratio method presented here. His comparison of ray
acoustics results with no-flow modal predictions were quite good. Rice39
has also shown good correspondence between the ray method and modal analysis
within acoustically lined ducts. Ray tracing in suppressors deviates from
modal analysis in the limits of either grazing or nearly normal incicence.
Unfortunately, Kempton's technique has been developed so far only for no-

flow in the duct. Perhaps an extension of his method, using the ray tracing
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method of Cho and Rice’~ through velocity gradients, may provide a power-

ful analysis method for radiation from aircraft inlets with suppressors.

SYMBOLS

Ai coefficients in the modal biasing function, see Eg. (29)

BS amplitude of discrete mode, see Eq. (27)

B3 acoustic liner confiouration reported in Ref. 49

Cg group velocity vector, m/sec

Cp phase velocity vector normal to wave front, m/sec

c speed of sound, m/sec

D duct diameter, m

59(50) moaal density function, see Eq. (28)

adB(¥) far-field radiation directivity attenuation, see Eq. (32), dB

AdB(ED) suppressor attenuation as a function of mode cut-off ratio, dB

AdBm maximum possible attenuation for a mode at its optimum imped-
ance, dB

F(gD) modal biasing function, see Eg. (29)

f frequency, Hz

G(WO.EO) correction factor for flanged duct radiation equation, see
Egs. (17) and (22)

H(wD,ED) Multiplying factor in far-fiela radiation equation of inlet
when transforming from no-flow to uniform flow conditions

k w/C, m'1

L duct length, m

MD duct flow Mach number

Me flow Mach number in far-field

m spinning mode lobe number (circumferential order)



oL S

far-field acoustic pressure for single modes with equal
acoustic power, see Eq. (24), N/m2

experimental far-field acoustic pressure, N/mz

multimodal far-field acoustic pressure for hardwalled inlets,
see Eq. (27), N/m2

multimodal far-field acoustic pressure for softwalled inlet,
see Eq. (31), N/m2

function of cut-off ratio, see Eqs. (24) and (25)

inlet termination reflection coefficient, see Eq. (21)

radial coordinate, m

circular duct radius, m

inlet termination transmission loss, see Eq. (19)

hardwall duct eigenvalue or magnitude of complex softwalled
duct eigenvalue

Vi-w

boundary layer thickness (1/7th power law), m

normalized boundary layer thickness, élro

frequency parameter, f0/C

specific acoustic resistance of acoustic liner

mode cut-off ratio with duct flow, see Eg. (1)

mode cut-off ratio in softwalled duct with flow, see Eg. (5)

mode cut-off ratio zero duct fiow

mode cut-off ratio of single descrete mode

density of air, kg/m3

V- el

V- e

phase of complex eigenvalue for softwalled duct, deg
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p phase velocity propagation angle relative to radial coordi-

nate, angle of incidence on wall, deg

éx phase velocity propagation angle relative to axial coordi-
nate, deg 5
X specific acoustic reactance of acoustic liner
v far-field angle measured from inlet axis, deg
wD angle between group velocity vector and duct axis with flow in

inlet duct, deg

Yo % when no duct flow considered, deg
Vp v for principle lobe peak, see Eq. (23), deg
¥y angle between group velocity vector and duct axis in general
case, deg
w circular frequency, rad/sec :

SIMPLIFIED APPROXIMATE SUPPRESSOR THEORY
In this section the elements of the simplified suppressor theory will
be outlined. The emphasis will be placed upon the concepts involved, and
most of the mathematical expressions upon wnich the technique is based will
be referenced for the reader who wishes to pursue them further. Only those
equations which are deemed necessary for clarity or which are modifications
to previously published results will be presented. Since the mode cut-off
ratio is the key to the methoo some discussion of it will first be presented.
Cut-off Ratio and Angles of Propagation
The relationships between the mode cut-off ratio ana the angles of
propagation are useful in visualizing the physics of the sound propagation
and help in the understanding of why a suppressor theory based upon cut-off
ratio should work., The modal cut-off ratio with a steady flow Mach number

(MD) in the hard walled duct is defined as



= 0 _ m
£y = - (1)

which is consistent with the derivation of Sofrin and McCann.41 For

&p > 1 the mode propagates, for £p < 1 the amplitude of the mode decays

exponentially with axial distance.
In Fig. 1 the propagation vectors and angles of propagation o

The phase velocity vector, Cp, is normal to the wave front. The s ...

flow axial velocity (cMD) is subtracted (for inlet flow) “rom Cp to

yield the group velocity vector Cg. The angles of pr-par.tion are given

by28’29

'/ 2
—MD + 1- 1/5U

-
1-wy p/1- 1Ed

[of =
0s éx

M + cOS ¢
cos wx = D X (3)

z
V'1-m My cos g

and at r = rg,

Vi-v Y- (ae)
cos br] = =
"o 50(1 - M, yl - /g )

which represents the angle of incidence upon the wall. From Egs. (1) and

(4)

(2) it can be seen that as §y » = both ¢ and ¥, » o0, that is
both the phase and group velccities are axial and thus the propagation is
purely axial. When &, » 1, cos 6, » -My and ¥, » 90°, or the

group velocity, which is associated with acoustic power flux, is purely

10



transverse. It has been shown28

that when the flow Mach number outside of
the duct (in the far-field) is the same as in the duct, the peak of the
principal lobe of radiation also occurs at wx. When there is no flow in
the fdar-field but flow in the duct, the far-field radiation peaks at bx.
An interesting example can be shown at &y = 1 and thus cos bx =

-My. If My~ -0.4, 6 = 66.4°. Thus near mode cut-off, for a static
engine test, radiation would peak at about 66° from the inlet axis rather
than at 90° as often .erceived.

Inspection of Eq. (4) shows that for modes with m/a small, the angle
of incidence on the duct wall has modal information only in the form of cut-
off ratio. It is known that absorption of sound by a suppressor depends
upon the angle of incidence and thus is dependent upon the cut-off ratio.

Suppressor Performance

The sound attenuation 1n a cylindrical suppressor- is obtained by using
correlations of the optimum impedance and maximum possibie attenuation.
These feed into a correlation of the actual damping contours which are
approximated as circles and used to estimate off-optimum suppressor
performance.

The concepts of optimum impedance and maximum possible attenuation are
illustrated in Fig. 2. Equal camping contours representing exact calcula-
tions for a particular moge (m = 7, u = 1) are represented by the solid
lines. As damping is increased, the contours shrink in size and the limit
is represented by the optimum impedance. The damping at this limiting
impedance is callec the maximum possible attenuation for this mode. Pushing
to higher attenuations would result in a contour which can be related to the
next higher radial mode (v = 2 in this case). Rice? discovered that these
optimum impedances could be approximately correlated with mode cut-off ratio

defined in the soft-walled duct as

11

P



EDS = (5‘1

in
a '/(l - MS) cos 2¢

This led to the important simplification in suppressor theory that
individual modes need not be considered. A1l modes with similar cut-off
ratios will behave similarly in a linea duct. Rice42 pursued this ap-
proach with a wide range parametric study of optimum impedance which re-
sulted in simpie correlating equations for both optimum resistance and
reactance. Ar. example is shown in Fig. 3. The symbols represent samples of
all of the modes while the curvec represent the results of the correlating
equations. It is seen that for fixed Mach number, frequency parameter, and
boundary layer thickness, all of the modes lie along a common curve. It is
interesting to note that the optimum resistance is a strong function of
boundary layer thickness for high cut-off ratios (mainly axial propagation)
but is independent of cut-off ratio nearer to cut-off (mainly transverse
propagation). This is reascnable since for transverse propaga.ion the wave
vector is mainly parallel to the direction of the velocity gradient of the
boundary layer.

Note that in Egq. (5) the cut-otf ratio definition differs from that in
a hard-walled duct (Eq. (1)). This is due to the complex eigenvalue with
phase p encountered in the suppressor. It should also be pointed out that
for the lowest radial orders of a high lobed (large m) mode, the optimum
impedance deviates somewhat from the correlation of Ref. 42. This can be
understood from the inspection of Eq. (4). When m/a is not much less than
unity, as for the modes mentioned above, the angle of incidence is a weak
function of mode 1nformation as well as cut-off ratio. Rice39 nas shown
that angle of incidence is perhaps a more basic parameter than cut-off ratio

in suppressor performance. However, cut-off ratio is more convenient and



small errors in a few modes when many are present are not serious. It
should be cautioned that for single mode calculations some error may occur
and it is sometimes these high m, low radial order modes that occur at dis-

crete tones in actual engines.

The maximum possible attenuation was also shown to be approximately

correlated by cut-off ratio alone.5 The expression used here is
1/2
8dB N 327 & 0.9221 1 +‘/1 _1.8442 | 0.879) (6)
L/D — ? J 4
3 £ 1
‘/E_- MD D D D

Equation (6) shows that maximum possible attenuation is a function only of
cut-off ratio, Mach number and duct L/D. Although optimum impedance can be

a strong function of boundary layer thickness,qz’43

it was shown in
Ref. 43 that the maximum damping is insensitive to boundary layer thickness.
Algebraic equations are thus available for both the optimum impeaance
and the maximum attenuation at this impedance which are functions o’ duct
Mach number, boundary layer thickness, frequency parameter, and cut-off
ratio. However, seldom is the actual wall impedance coincident with this
optimum. To handle off optimum impedances an equation was deveioped for
circular constant attenuation contours which closely approximate the actual
attenuation contours. An example of the results of this equation is shown
in Fig. 2. The contour equation was first developed from an extensive study
of well propagating modesqa (large ED) and then modified8 to handle
near cut-off modes (ED = 1) and boundary layers.
The use of the suppressor attenuation package can be summarized as
follows. It is assumed that duct geometry, flow, boundary layer thickness,

frequency, and liner impedance are known. A cut-off ratio is chosen which

then allows calculation of the cptimum impedance and maximum possible

13



attenuation. These are then used in the circular contour equation (along
with MD’ n and the wall impedance) to calculate the actual attenuation
for the liner. This is repeated for a series of cut-off ratios to deter-
mine AdB(ED) as a function of &,
FAR-FIELD RADIATION AND DUCT TERMINATION LOSS

In order to make full use of the simplified cut-off ratio method in the
acoustic liner, a far-field radiation expression must be developed which
contains all the modal information in the form of cut-off ratio. OQut of
necessity, the expression used had to be simple in form, which eliminates
the Wiener-Hopf and spherical wave function methods. The starting point is
thus the zero flow flanged duct radiation expression of Tyler and

5

Sofrin.9 Saule4 presented a modified form of this equation which

yields equal acoustic power per mode

2 V) - o iy, (o sin w,))°

) 2. [2 ¢ )
(1 ~ (m/a)"] E: - (mn sin wo)z:l

R1ce7 further modified this equation to suppress modal information except

in the form of cut-off ratio to obtain

2
P2 2 sin wo y‘l - 1/{3 {s1n[nn(s1n wo - 1/50)]}

ﬂ2n [1/5(2J - Sinzw;—]

where the sinusoidal approximation for the Bessel function was used and it

was assumed that m/a << 1. The zero subscripts are used in Eqs. (7) and
(8) to denote z2ero Mach number. Equation (8) has been compared to Eg. (7)
by Saule and Rice46 for several modes. This approximation was found to be

more adequate than expected with only miror error except for the lower

14



radial, high lobe number (large m) modes which violate both of the above

46

assumptions. Equation (8) has been used7' extensively to generate

approximate multimodal radiation patterns using an extremely simplified

integration (over go) scheme. These multimodal radiation directivities

fit more exact calculations very accurate1y.7’46

1.28 14

extended the work of Candel,20 Lansing, et al.,
15 (

Rice, et a
and Homicz and Lordi whose radiation expressions are valid either for
no flow or for interior and exterior flows equal) to handle the case of
radiation from a duct with an axial flow Mach number (MD) to an ambient
field with axial Mach number (M_). An important special case of this is the
static engine test where M_ = 0 which will be reviewed here. The concepts
behind the angle transformations which will be given below can be shown by a
discussion of Fig. 1. The phase velocity vector, Cp, is normal to the
wave front and propagates at an axial angle bx. Note that for a given
mode (eigenvalue a) at a given frequency (n) the cut-off ratio is a func-
tion of duct Mach number, MD, as seen from £q. (1). Equation (2) shows
that bx is further modified by duct Mach number (MD) and thus the wave
front for a given mode propagates at a different angle with duct flow than
for no-flow. An additional effect of duct flow is that the duct fiow veloc-
ity (cMD) must be subtracted (for an inlet case) from the phase velocity
vector (Cp) to form the group velocity vector (Cg). The acoustic power
propagates in the direction of Cg. It has been shown28 that if the
far-field Mach number is the same as the duct Mach number the bulk of the
acoustic power will be radiated at angle Voo Diffraction at the inlet
1ip will occur to form sidelobes, but the peak of the principal lobe of

radiation will occur at wx. The more interesting case, for which no

exact solution is available for an inlet flow, is when the exterior Mach

15
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number is different than the duct Mach number. If the exterior Mach number
is zero, as in a static test case, the axial flow velocity vector must be
removed and the sound will propegate normal to the wave front at angle

éx. Only refraction, refliection off a bellmouth, or altering MD and

) by a geometry change can change bx (see Ref. 40 for a discussion of
the refraction effect), The change in bx due to sound passing through a
gradual geometry variation can be deduced from the work of Cho47 and the
alteration of the radiation directivity for the no-flow case has been
Jemonstrated by Posey, et a1.48 For the results presented here no altera-
tion of bx by the above effects is considered. These effects, still in
the research stage, can be added later.

The above discussion, although focusing on the static engine test case,
is far more general than at first appears. In flight the wave front is
always discharged into a static environment and thus it is propagating at
angle bx. Retarded time effects accounting for the travel time of the
wave from the aircraft to the observer will alter the apparent radiation
directivity and must be considered. Only for wind tunnel tests or for
microphones mounted on the aircraft must an external Mach number other than
zero be considered.28

The angle transformations just discussed will now be presented. To
convert from zero Mach number everywhere (in-duct and rar-field) to uniform
Mach number (ND) everywhere the following substitutions are used.ld’ls’z0

Replace sin wo by

- g sin )
sin ¢ = (9)

V- Mg sin“yp

cos ¥o by

le
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_ cos wD
cos ¥ = - (10)
4

'/i - MD sin WD
n by

E=§ (11)
and &, by

£

- 0

1 re (12)
where

= Y1 (13) ;

The term WD denotes the angle from the inlet axis for the case where a
Mach number MD exists inside the duct and in the far-field.

Equations (7) or (8) must also be multiplied by,

Higety) = D 0 (14)
I-MD'/I-llED
for the inlet case.lq’ls’20 For exhaust radiation the factor H = 1.
The removal of the far-field Mach number (thus M_ = 0) was first

deve10ped28 for principal lobe radiation and then genera]ized29 for any

arbitrary angle. This transformation which replaces WU by the final ,

far-field radiation angle ¥ is given by 3

MD +cos vy _ {

cos yp = (15)

?
V'1+ns s My cos v

or

17



cos ¥ = -M, sinzwD *+ cos ¥ '/i - MS sinzwo (16)

Before these angle transformations are made in £q. (8) two other exten-
sions of the radiation theory must be considered: an approximate unflanged
duct correction and maintenance of equal energy per mode in the two flow
Mach number system.

Approximate Unflanged Duct Correction Factor

Since the radiation pattern is shifted toward the inlet axis when a
duct Mach number is present with no-flow in the far-field, the flange posi-
tion (90°) is shifted into the front quadrant and errors will be encountered
at angles beyond ¢ = 66° for MD = 0.4, A correction factor was thus
needed to make the flanged duct radiation directivity more closely resemble
the unflanged duct directivity which is valid for all angles.

Sawdy ("Cutoff Ratio Analysis for Predicting Inlet Liner Suppression
Performance," Boeing Document No. D3-11719-1, unpublished) has extended the
work of Levine and Schwinger10 to derive an unflanged duct correction fac-
tor for use with either Eq. (7) or (8) which is valid for a general mode and
for the no-flow case. This factor is expressed as

2

2 . 2 2
(cos wo + 10)2 + ZR(ilco - sin wo) + R {cos wo - To) (17

2

G(WO,EO) = 1 - R

where

= Vi- 1/55 (18)

and R is the termination reflection coefficient. The reflection coeffi-

“s Iy,

cient can be evaluated by using an approximate termination transmission loss

developed by Rice’

18
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0

o
(4
(1+ 7))

T(g,) = (19)

which was shown to approximate the results of Zorumski.31

The reflection
coefficient is determined from

2

R™(g,) =1 -T(g) (20)
or
L 1
R(Eo) =57 (21)
0

Using Eqs. (18) and (21) in (17) reduces Sawdy's expression to,

6408 ,) & 11+ cos y,)° (22)

It is interesting to note that the angle dependence of G(wo,zo) is

exactly the same as the Kirchoff approximation discussed by weinstein12

and Levine and Schwinger.10

Recall that £q. (22) will be used as a multiplier of either Eq. (7) or
(8) to better approximate the unflanged duct radiation pattern. Notice that
between wo = 0 and wo = 90°, G(wo,ﬁo) is reduced by a factor of
four (or -b dB) which is precisely what is needed to remove the pressure
doubling of the reflection at the flange.

Final Radiation Equation for Equal Acoustic Power per Mode

Recall that Eq. (8) was an approximate radiation expression developed
for a flanged duct with no-flow and equal acoustic power per mode. We are
in the process of deriving an approximate unflanged duct radiation expres-

sion which is valid with flow in the duct but no-flow in the far-field.

Since no exact solution has been shown to exist for this problem several

19
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kinematic arguments have been utilized to derive an expression. There is no
reason to believe that the final expression would provide the desired equal
acoustic power per mode solution in the far-field. A coefficient must be
derived which will guarantee this equal acoustic power distribution.

Rice and Saule30 have shown, using Eq. (8), that the product of the
acoustic pressure amplitude of the principal lobe peak (principal lobe con-
tains most of power) and the solid angle subtended by the principal lobe (on
a constant radius sphere) is a constant. The acoustic pressure in a prin-
cipal lobe thus falls off as the mode is shifted toward the sideline because
the solid angle increases and acoustic power must be maintained. They used
this simple principle obtaining excellent results in an aft radiation
study. This same method will be used here to obtain a normalizing factor.

28

The principal lobe peak has been shown™™ to be located at

8
EDE - M yl - l/ES]

If £q. (8) is multiplied by Eq. (22), then the transformations of Egs. (9)

. ) 3
sin wp (23)

to (12) applied, the result multiplied by Eq. (14), and finally the trans-
formation of £q. (15) applied, then the un-normalized radiation expression
will be obtained. This intermediate result will not be given here. Requir-
ing that the product of the acoustic pressure amplitude of the principal
lobe peak and the subtended area of this lobe be a constant, results in the

final equation,

e
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where,

21(1 * M) (1 - MDT)3

7
2net(1 + 1)2 Vi- Mgrz - 5”0%]
= Y1- 1/56 (26)

Equation (24) has been integrated numerically over the principal lobe for

aley) = (25)

several values of ED and found to contain almost equal acoustic power
for all cases.

Although Eg. (24) is guite lengthy, it is a ciosed form algebraic equa-
tion which describes the inlet radiation for the complicated but realistic
case of flow in the duct but no flow in the far-field. This expression is
the only one known to the authors which attempts to describe this complex
phenomenon.

Before examining results of calculations using the inlet radiation
equation, the case of aft radiation with flow will be reviewed. This case
provides some confidence in the angle transformations for a problem for

which an exact solution exists.
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Simplified Aft Radiation Model
The aft duct of an engine can be simulated by a cylindrical jet dis-
charging into a static surrounding medium with a slip layer separating the
two regions. This problem can be solved exactly using the Wiener-Hopf tech-

nique which has been done by Savkarl6’17

whose program will be used here

to generate the exact results. Rice and Saule30 have also solved this
radiation problem starting with .he zero flow flanged cuct radiation rela-
tion (Eq. (8)). The same angle transformations were used as in the previous
sections, but with the addition that the refraction effect through the shear
layer was considered. The exact and approximate radiation directivities are
compared in Fig. 4 (from [ >f, 30). The agreement is surprisingly good. The
location of the peaks and valleys are well described. The location of the
zone of silence is also well represented. Small errors occur in the magni-
tudes of the side lobes which are probably due to solid angle changes caused
by shifts in location which could be corrected for if deemed necessary. The
conclusion from this comparison is that convection, refraction, and diffrac-
tion effects can be handled by the simple procedures used in this paper.

One major difference occurs between inlet and aft raaiation which is
relevant to the use of the flanged duct radiation equation as a starting
point in the analysis. Recall that beyond Y, = 90°, the flange duct
radiation equation is not valid even with the correction factor of
Eq. (22). This is because sidelobes occur in the rear quadrant and the
Wiener-Hopf method shows that these cannot occur.15 For aft radiation
with duct flow this wo = 90° point is shifted away from the aft axis out
of the range of interest for the final solution. For inlet radiation, the

wo = 90° point is shifted toward the inlet axis directly into the region of
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interest for the solution. This will become evident in later sections and
suggests that some improvements are required in the simplified inlet radia-
tion equation.
Multimodal Inlet Radiation Directivity with Duct Flow

The simplified expressions for multimodal far-field radiation for an
inlet with flow in the duct and no-flow in the surrounding medium will be
presented here. The use of these equations will be discussed but sample
calculations will be deferred to a later section.

The multimodal radiation pattern is given by

c(0) = [_1 F (e T(EIPE(Y,Ep)dey + BT(EIPE(V,E)  (27)

D=
The first term represents the inteyration (or summation) of all of the
randomly generated modes such as might - ~r in broadband noise or even for
tones in a static engine test if inflow distortion is present. Notice that
this term represents a continuum of modes ond the actual number of modes is
irrelevant as long as they are numerous. All of thé equations in this paper
have been derived in this way so that modal identity is unnecessary and only
cut-off ratio is retained. The second term allows for a single discrete
mode such as might be generated in an inlet at slightly supersonic rotor tip
speeds. Since this mode would be uncorrelated with the randomly generated
modes the pressures-squared can be added in this manrer. Equation (27)
could be extended to include additional discrete modes, but since they would
probably be correlated, modal phasing would have to be considered and the
pressures would have to he added before they are squared. Experimental data
would have to be obtained very accurately and with fine angular resolution

to make use of such a refined expression.
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The term PE is the equal power per mode radiation expression

given by Eq. (24), T is the duct termination loss coefficient given by

Eq. (19), and @ 1is the modal density function6 given by,

a(c,) = (28)

m'm
O w

which describes the relative density of the modes. The modal biasing func-
tion F and the modal amplitude BS must be considered inputs from a
noise source analysis or else derived from experimental radiation data.

45 7

Saule, , and Heidelberg, et a].,49 have all attempted to infer

Rice,
source power distribution information from far-field radiation data, the
latter two inferring the exponent n on a simple modal biasing function

Fe,) = 1/g

o using a simple radiation expression based upon zero

flow radiation theory (P; & COS wolsinnwo from Ref. 7).

Heidmann, et a1.29 50

and McArale, et al.” have confirmed the presence of
a single mode (essentially determining BS in Eq. (27)) in inlet tests cf
an engine specially configured to produce the mode. They used the same
angle transformations presented here to correct for the convective effects
of duct flow and obtained good agreement between theory and data.

The simplist case for F(eU) is to consider it as a constant and let
BS = 0 in Eq. (27) and then the radiation directivity for equal energy per

mode is represented. A more general expression can be formeo by extenaing

the modal biasing function presented by Rice7 as a series in cut-off ratio
given by
L ,
F(eg) = Z p g (29)
=l

The coefficients can be determined by forming the error relation,
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£ = ng(w - Pi(w)] sin ¥ dy (30)

V=0

and E can be minimized with respect to each unknown Ai and BS to
generate a system of equations for these unknowns. ng(W) in Eq. (30)
is the experimental data for the hardwalled inlet.

A theoretical attenuatea far-field radiation directivity can be gen-
erated by using the attenuation function AdB(ED) discussed in the sup-

pressor section. This can be expressed 1s

[AdB(ED)/lo]

(v) = 10 Fleg)@(e ) T(E )PE(, ok,

[adB(E

g)/10]
+ leO

TE)PE(v,E)  (31)

The far-field attenuation directivity can then be given as

dB(¥) = 10 L Pia(w) (3¢)
A = 0g _T——— <,
PE(¥)

At this time the integrals in Egs. (27) and (31) are performeu numerically.
The modal density function has been used to select increments in ED that
contain equal numbers of modes. One hundred steps are used for the results
to be shown later. Rice7 has used an approximate integration scheme to
produce a simple multimodal radiation equation for no flow. A comparable
result for inlet radiation with duct flow is under development.
SAMPLE CALCULATIONS AND COMPARISON WITH EXPERIMENT

Several sample calculations will now be presented to show the character
of the refinements made in the radiation equation to account for the convec-
tive effects of inlet duct flow. These calculations will be made for single

25



oo

modes, multiple modes, and to demonstrate the determination of the modal
biasing function from far-field radiation data.
Single Modes

The radiation directivities for two modes are chown in Fig. 5 for no
flow and in Fig. 6 for MD = -0.221. Note that the ordinate is the divec-
tivity weighted by the modal density function and the duct termination loss
as occurs in tre integrand of Egs. (27) and (31). Several modes could have
been selected in Fig. 5 which would have snown good compari..1s with
Wiener-Hopf solutions. However these two modes, or more accurately these
two cutoff ratios, were selected to show a problem with the radiation model
which needs correction. In Fig. 5 both modes are represented withsufficient
accuracy up to ¥ = 90°. However beyond ¥ = 90° note that for €, = 1.05
the directivity curve experiences a mild secornd peak with a rapid rolloff at
higher angles. According to Homicz and Lordi15 when a peak occurs beyond
¥ = %0° in the Wiener-Hopf solution a single broaa lobe occurs wit no
zeroes. This aft lobe in Fig. 5 thus cannot be considerea accurate. The
second mode, for £ = 1.1261, was chosen to produce a minimum at
Y= 9°. An inspection of the results of Canoel20 seems to indicate that
when a lobe minimizes at ¥ = %° there is essentially no radiation at all
in the aft quadrant for an urflanged duct. The present solution produces a
lobe peaking at ¢ = 115° which must be considered completely spurious.
Again it should be emphasized that the radiation directivities in Fig. 5 are
perfectly adequate up to ¥ = 90°. However when MD = -0.2¢1 as in
Fig. 6, both radiation directivities are shifted té@ard the inlet axis. Now
the questionable peak for ED = 1.05 dominates the radiation at ¢ = %0°
and the spuricus aft lobe for CU = 1,1261 is beginning to contribute

(a larger inlet Mach number would cause it to cdominate). It is thus obvious
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that with an inlet duct flow the present model will overpredict the true
radiation pattern at angles near the sideline.

It should be expected that wien an analysis is pushed beyona its range
of validity, some errors will result. In this case it was necessary since
no exdct solutions exist to handle the flow conditions of a realistic
inlet. Alterations to the theory will be pursued to insure more realistic
representation of the broad lobe in the aft quadrant and to remove spurious
aft lobes.

Multimodal Radiation Directivity

Several multimodal radiation directivities are shown in Fig. 7 for
equal acoustic power per mode and duct Mach numbers ranging from MD =0 !
to -0.8., These calculations were made using Eq. (Z7) with Bs = 0 and

also Eq. (29) with A, = 107 ana all other A, =0. For M, =0,

7,46

b
results but with

the curve in Fig. 7 reproduces previously published
improved accuracy between ¢ = 80° to 90°. As inlet Mach number is intro-
duced, the radiation directivity is shifted dramatically toward the inlet
axis. At M; = -0.8 most of the radiation is confined to the front 30°.
The reversal or oscillations in the directivities at larger angles are
caused by inadequately represented aft lobes discussed in the previous sec-
tion. The directivities should show a monotonic fall-off at large angles
and the portion of the curves with oscillations are not considered valid.
Determination of Modal Biasing Function

Inlet radiation data from Ref. 49 for the blade passage frequency from
a Lycoming YF102 engine at approach engine speed are s'own in Fig. 8. A
massive aft suppressor was used so that the data can be considered to ori-

ginate from the inlet. Equation (27) was used for the theoretical radiation

curves with the extra discrete mode amplitude, Bs = 0. The modal biasing
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function (F(ED) from Eq. (29)) was allowed to contain one to three co-
efficients. With one coefficient equal acoustic power per mode is assumed.
It is seen from Fig. 8 that the data indicates that more power is present at
low cut-off ratios (larger angles) than equal power per mode allows. When
two or three coefficients are allowed the dashed curve of Fig. 8 is ob-
tained. This provides a better fit to the data but the upturn in the
theoretical curve beyond 80° shows the effect of the spurious aft lobes.
Much more experimentation is required into the best form of the modal
biasing function.
Suppressor Calculations

The experimental radiation directivity attenuation (from same data as
Fig. 8) at blade passage frequency for liner B3 (see Ref. 49) is shown in
Fig. 8. The theoretical suppression directivities were generated using
Eqs. (27), (31), and (32) with three coefficients used in the modal biasing
function of Eq. (29). A series of liner resistances were used to generate
the theoretical curves in Fig. 9. Notice that for Tiner resistances in the
range of about 1.5 to 5 (resistance normaiized by pc) the theory agrees
quite well with the data. Also recall that for angles greater than about
80° the theory as presently formulated cannot be trusted due to the spurious
aft lobes. The liner resistance, as calculated from the impedance model for
perforated plate (see Ref. 49), is 0.875. This value has not been corrected
for potential hole blockage which may increase the resistance to possibly
1.1 (20 percent blockage). Even with this correction the theory must be
considered as underpredicting this data, The theory is qualitatively cor-
rect in predicting larger attenuation near the sideline and low attenuation
near the inlet axis. The theory is also qualitatively similar to that of

37,38

Kempton who used ray acoustics with no-flow.
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The suppressor directivity theory was used to predict the loss of sup-
pressor etfectiveness with increasing suppressor length as shown in
Fig. 10. This loss of suppressor performance is inherent in the complex
structure of the radiation pattern. For short suppressors the principal
lobes of the easily attenuated modes near cut-off show large reductions near
the sideline, As suppressor lenrgth is increased the sidelobes of the higher
cut-off ratio modes limit the suppression at the near sideline angles and
additional suppression can ie otained only by reducing these more difficult
to suppress modes. Suppressor effectiveness is thus progressively reduced
as more length is added. The angle of peak attenuation is also shown to
move toward angles nearer the iniet axis. Another phcnomenon exists to pro-
duce this same result but it is not as yet included in the present moael.
As a mode enters the suppressor it is scattered into higher radial orders
which may damp quite easily. As suppressor length increases only the least
attenuated mode remains and adB/L/D will flatten out when plotted against
L/B. This effect has not as yet been proven to be a dominant factor for
multimedal excitation of the liner,

CONCLUDING REMARKS

The method of suppressor aralysis based upon mode cut-off ratio has
been reviewed here. The technique appears to be a viable methoa of analysis
of the entire inlet suppressor system including provisions for noise source
characteristics, souna propagation through acoustically lined ducts, duct
termination effects, and radiation to the far-field. The key to the method
for use with many modes is that individual modal identification is not re-
quired but is instead represented through the mode cut-off ratio. The modes
are considered to be distributed in a continuum of cut-off ratios and the

possibility that large numbers of modes may be present (high frequency
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broadband noise) poses no problem. Ffor single or only a few modes, classi-
cal modal analysis is suggested, but some of the angle transformations given
here must be used to obtain reasonaole far-field radiation results for real-
istic inlet flow conditions.

The new contributions to the method presented here are the inclusion of
the effect of inlet duct flow (far-field static) on the radiation direc-
tivity, an improved method of evaluating the source modal biasing function
(source power distribution), and the removal of the pressure doubling effect
of the flange of the simple radiation model used here. Several interesting
phenomena have been demonstrated by exercising the present model. The far-
field directivity attenuation can be shown to peak near the angles suggested
by experimental data. For a constant source sound power distribution, in-
creased duct Mach number causes the radiation to be moved towara the inlet
axis. 1he radiation directivity has been shown to be a strong function of
<~urce power distribution. Although not shown here, preliminary calcula-
tions have shown that radiation directivity attenuation is only a weak func-
tion of source power distribution (for many modes) agreeing with the results
of Kempton.37’38 The loss of suppressor efficiency with increasing length
has been shown to be aii inherent property of a multimodal source.

Several improvements must be made to achieve quantitative agreement
with experimenial data. The method provides for the convenient inclusion of
improved physics due to its modular nature which also allows for selective
empiricism to be incorporated if required. Modal scattering in the acoustic
Jiner must be studied, correlated, and incorporated into the program if it
is significant. The effects of duct area variation and flow gradients must
be considered. The modifi.ation of the radiation pattern by inlet 1ip shape

and refraction through accelerated flows near the 1ip must be studied, Of
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most immediate concern is the removal of the spurious aft lobes in the
flanged duct radiation equation which are shifted into the forward quadrant
due to duct flow convection effects. The biggest problem is that there is
no exact solution with which comparisons can de made. Kinematic corrections
must be made to the Wiener-Hopf solutions to simulate solutions for realis-
tic inlet flows and there is no guarantee that the diffraction effects are
properly modeled. Two approaches might be tried. The Wiener-Hopf solution
for uniform flow everywhere must undergo an angle transformation to remove
the effect of the far-field flow (which must be static). The second ap-
proach might be to use the Wiener-Hopf solution with a tube of flow extend-
ing from the inlet (static surrounding medium) and then remove the effect of
refraction through the rotational flow slip layer that does not actually
exist in a real inlet flow. The first approach has shown promising results
for matching a single mode principal lobe to experimental data in an engine
inlet test.so The secord approach was used in reverse order for an aft
radiation problem where the Wiener-Hopf solution is valid. The flanged duct

model was transformed to account for convection and refraction30

and
agreed wel) with the Wiener-Hopf sclution.
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MD 0.4, £+ 0002
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Figure 3, - Comparison of correlating equation with
exact calculations of optimum resistance for vari-
ations in houndary layer thickness.
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fFiqure 5 - Far-fielu radiation directivity for twc modes
n=893 Mp- 0
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Figure 7. - Far-field radiation dirnctivity for equal acous-
tic power per mode, m = 14, 09.
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Figure 8. - Example of fitting radiation theory to exper-
imental data by varying model blasing functicn,
Fy. Ep). n =893, My = -0.221, data from
reference 49,
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fFigure 9. - Comparison of theoretical and experimental
far-field directivitv attenuaticns, data reference 49,
blade passage frequency,n = 8.93, Mp = 0.221,
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RATIO OF SUPPRESSOR LENGTH TO DIAMETER, L/D

Figure 10, - Theoretical loss of suppressor efficiency with
increasing length, n « 14.09, Mp « -0.375, € = 0.07],
8« 1171, x=-L1n



